
NetIQ Access Manager Template Action Policy (Deny) Readme

The Policy extension examples include:

• PolicyActionExtnDenyFactoryTemplate.java

• PolicyActionExtnDenyTemplate.java

Purpose

This example can be used as a template to implement an action policy extension of type Deny. This

example provides a basic framework that can be used as a starting point for creating action policy

(com.novell.nxpe.NxpeContextActionElement.) deny extensions.

This example covers the following:

• How to configure and install the Action policy extension of type ‘’Deny’’ in the Administration

Console

• Implementation details of the Action policy extension factory and extension classes

Functionality

This policy action extension can be of type "Deny", "Permit" or "Obligation". An action defined as "Deny"

extension in UI will always Deny access. Deny Action Extension can return "Custom Deny message" or

"Custom Redirect URL".

Implementation Details

• This Action Policy Extension of type Deny example consists of the following two Java classes:

o PolicyActionExtnDenyFactoryTemplate.java: Implements the

com.novell.nxpe.NxpeActionFactory interface. This is a factory that creates

PolicyActionExtnTemplate objects

o PolicyActionExtnDenyTemplate.java: Implements the com.novell.nxpe.NxpeActionFactory

interface. It contains the methods required to create a context action element that can be

used for authorization, for activating roles, or in a condition

• This class needs a configuration parameter LDAP User DN of the user. Configuration parameters

are set for a policy extension through the Administration Console. In the policy extension, the

values for these configuration parameters are retrieved at the time of evaluation from the

NxpeInformationContext object that is sent to it by the policy engine

• The doAction method in the NxpeAction interface is called by the policy engine when a request

triggers a policy evaluation. It executes the logic present in the policy extension and returns the

results

• The getLDAPUserDN method in PolicyActionExtDenyTemplate is used to retrieve the value of the

LDAP User DN configuration parameter from the NxpeInformationContext object

• The NxpeException class is used for exceptions in PolicyActionExtDenyTemplate

• Deny Action Extension can return "Custom Deny message" or "Custom Redirect URL" using

PolicyExtensionResponseParameters class. For this, Extension classes have to use

setExtensionResponseParameters method of NxpeResponseContext

As following:
PolicyExtensionResponseParameters para = new PolicyExtensionResponseParameters();
para.setActionExtensionResultAction(ActionExtResult.DENY);

//set redirect url
para.setActionExtensionPostDenyAction(PostDenyAction.REDIRECT_URL);
para.setActionExtensionDenyRedirectURL("httsp://www.google.com");

//set deny message
para.setActionExtensionPostDenyAction(PostDenyAction.DENY_MESSAGE);
para.setActionExtensionDenyMessage("You are not allowed !");

//send the deny message/redirect url using responseContext
responseContext.setExtensionResponseParameters(para);

• When Deny Action extension returns "NxpeResult.Success" on Success, the browser displays the

custom deny message and on Failure (NxpeResult.GeneralFailure,

NxpeResult.ErrorDataUnavailable etc) it redirects the control to the custom URL

• When the LDAP_USER_DN is empty or null the catch block handles the exception and the default

message will be displayed on the browser

• The Action policy extension can be used in the Access Gateway Authorization policies

How to Customize This Example to Meet Your Needs?

• Factory: Modify the PolicyActionExtDenyFactoryTemplate class to control the creation of

PolicyActionExtDenyTemplate as needed. Synchronize the methods of

PolicyActionExtDenyTemplate accordingly to avoid problems due to concurrency

• Configuration parameters: Identify and set the configuration parameters required by your action

extension and provide their mappings in the Administration Console

• Implement getter methods for all of your configuration parameters in the

PolicyActionExtDenyTemplate class, as it has been done for retrieving LDAP User DN in this

example

• Modify doAction method to contain your own policy evaluation logic in

PolicyActionExtDenyTemplate

• For creating the Action policy extension for other policies, create a policy extension from your

customized extension classes of the type of Authorization and then create a policy of the same

type that uses your policy extension. For more information, see Section 6.2.3, Creating Roles, Section

6.4.2, Configuring an Identity Injection Policy, Section 6.3.2, Creating Access Gateway Authorization

Policies, and Section 6.6, Creating External Attribute Policies, Section 6.1.6, Adding Policy Extensions in the

NetIQ Access Manager 4.2 Administration Guide.

For more details about the implementation, see comments in the

PolicyActionExtnDenyFactoryTemplate and PolicyActionExtDenyTemplate classes or NetIQ Access

Manager 4.2 Developer Guide.

Installation

Before starting installation, ensure that the following prerequisites are met:

The following Java classes and jar files nxpe.jar & nidp.jar:

• PolicyActionExtnDenyFactoryTemplate.java

• PolicyActionExtnDenyTemplate.java

Download netiq-access-manager-sdk-4_2-extensions.tar.gz (SDK tar) from

https://www.netiq.com/documentation/access-manager-developer-documentation/resources/netiq-access-

manager-sdk-4_2-extensions.tar.gz.

For information on how to obtain nxpe.jar, see section 4.1.1 Prerequisites in the NetIQ Access

Manager Developer Guide 4.2.

• Java SDK (jdk1.6) to compile the Java sources

• Apache Ant. You can download it from http://ant.apache.org/bindownload.cgi

• An Access Manager setup with the Identity Server, Access Gateway, and policies

• A basic knowledge of Java programming

Setup

Extract the SDK tar (netiq-access-manager-sdk-4_2-extensions.tar.gz). Go to nam_4_2 > samples >
PolicyExtension > TemplateActionDenyExtension_Example. The PolicyExtensions.jar will be present at
this location.

This jar contains all the policy extension example's compiled classes. This jar can be used for this
example. If you want to customize this example before installation, modify its java source, compile,
and generate a Jar file.

Steps:

1. Go to nam_4_2 > samples > PolicyExtension > TemplateActionDenyExtension_Example and
run the build.xml. This will generate the PolicyExtensions.jar in the same location where build.xml is
available.

To run build.xml, you need to copy nxpe.jar in the nam_4_2 > samples > PolicyExtension > nxpe folder
before running build.xml. Note the location where Java and Ant are installed on your system. Set

https://www.netiq.com/documentation/access-manager-42/admin/data/bookinfo.html
https://www.netiq.com/documentation/access-manager-42/nacm_enu/data/bookinfo.html
https://www.netiq.com/documentation/access-manager-42/nacm_enu/data/bookinfo.html
https://www.netiq.com/documentation/access-manager-developer-documentation/resources/netiq-access-manager-sdk-4_2-extensions.tar.gz
https://www.netiq.com/documentation/access-manager-developer-documentation/resources/netiq-access-manager-sdk-4_2-extensions.tar.gz
http://ant.apache.org/bindownload.cgi

them in the Path environment variable and run the ant dist command. For example, run the following
commands in the Linux environment:

• Export ANT_HOME=/usr/apache-ant-1.8.1<set it as per your environment>
• Export JAVA_HOME=/usr/java/jdk1.6.0_27<set it as per your environment>
• Export PATH=$ANT_HOME/bin:$JAVA_HOME/bin:$PATH
• ant all

2. Create a policy extension of the type Access Gateway: Authorization. For steps, see Installing the

Extension on the Administration Console in the NetIQ Access Manager 4.2 Administration Guide.

2.1. Create a new policy extension:
• Name: TemplatePolicyActionExtension
• Type: Access Gateway: Authorization
• ClassName: com.novell.nam.custom.policy.action.PolicyActionExtDenyFactoryTemplate
• File name: name of the jar file created in step 1

NOTE: There should be no empty spaces anywhere in the Class Name.

2.2. Policy extensions configuration parameters: Configuration parameters are sent to the policy

extension for execution.

• Name: LDAP_User_DN (Name can be anything)
• ID: 41 (This must match the parameter ID as mentioned in the policy extension

implementation in the code)
• Corresponding extract from PolicyDataExtnTemplate.java:

o private static final String LDAP_USER_DN_NAME = "LDAP User DN"

o private static final int EV_LDAP_USER_DN = 41

This parameter has to be mapped to LDAP User DN of the user present in the credential profile as

shown in the following image:

https://www.netiq.com/documentation/access-manager-42/admin/data/b137qgxp.html#bfreh3q
https://www.netiq.com/documentation/access-manager-42/admin/data/b137qgxp.html#bfreh3q
https://www.netiq.com/documentation/access-manager-42/admin/data/bookinfo.html

3. Distribute the policy extension.

For the steps, see “Distributing Policy Extension”. Create an authorization policy from the data

extension, assign the policy to the Access Gateway, and distribute the policy extension created in

step 3.

The TemplateActionPolicy authorization policy created in this step will be assigned to a protected

resource. For more information, see Assigning an Authorization Policy to a Protected Resource. This

policy will evaluate the TemplatePolicyActionExtension – Policy “Action” Extension created in step 2

and will decide whether to provide access to the protected resource. Since the action extension

created is of type “Deny”, it would deny the access to the protected resource.

New Access Gateway: Authorization policy

Rules defined in this policy:

• Condition Group: Authentication Contract

• Action: Permit: ActionExtension(Deny) : TemplatePolicyActionExtension

https://www.netiq.com/documentation/access-manager-42/admin/data/b137qgxp.html#extensions
https://www.netiq.com/documentation/access-manager-42/admin/data/b3q8q2k.html#pr_authorization

This points to the TemplatePolicyActionExtension, which is a policy action extension created in step 2.

This will deny the access to the protected resource to which the policy would be assigned. The

browser will display the custom message or redirect to a custom URL depending upon the return

value (Success or Failure) of action extension. In case of any exception the browser will display the

default message.

For information about NetIQ legal notices, disclaimers, warranties, export and other use restrictions, U.S.

Government restricted rights, patent policy, and FIPS compliance, seehttps://www.netiq.com/company/legal/.

© 2016 NetIQ Corporation. All Rights Reserved.

For information about NetIQ trademarks, see https://www.netiq.com/company/legal/. All third-party trademarks

are the property of their respective owners.

https://www.netiq.com/company/legal/
https://www.netiq.com/company/legal/

